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Abstract Modal Kleene algebras are Kleene algebras with forward and backward modal opera-
tors defined via domain and codomain operations. The paper investigates the algebraic structure
of modal operators. It studies and compares different notions of termination in this class, includ-
ing an algebraic correspondence proof of Lob’s formula from modal logic. It gives calculational
proofs of two fundamental statements from rewriting theory that involve termination: Bach-
mair’s and Dershowitz’s well-founded union theorem and Newman’s lemma. These results are
also of general interest for the termination analysis of programs and state transition systems.

1 Introduction

Kleene algebras are fundamental structures in computer science with applications ranging
from program development and analysis to rewriting theory and concurrency control. Initially
conceived as algebras of regular events [13], they have recently been extended to variants
with infinite iteration [5] and abstract domain and codomain operations [7]. The second
extension leads to modal algebras. Forward and backward boxes and diamonds are definable
“semantically” from domain and codomain operations. Their symmetries can be expressed
by dualities and Galois connections.

We propose modal Kleene algebras as a useful tool for termination analysis, both for the
investigation and comparison of different notions of termination and for specifications and
proofs that involve this concept. Modal Kleene algebra allows a simple and calculational style
of reasoning that is also well-suited for mechanization. Induction with respect to “external”
measures is avoided in favour of “internal” fixed-point reasoning and contraction law. Proofs
can often be written in a point-free style in the algebra of modal operators. This introduces
a new level of abstraction and conciseness.

Our main results are as follows. First, we provide a point-wise lifting from modal Kleene
algebras to the algebras of modal operators. These are both lattice-ordered monoids with
Boolean retracts and again Kleene algebras. Consequently, the Boolean and Kleenean laws
are available for point-free modal reasoning.

Second, we investigate a notion of termination in modal Kleene algebra that arises by
abstraction from set-theoretic relations (c.f. [3]). It roughly says that a relation does not
terminate, if some set is contained in its image under the relation, thus providing a basis
for infinite iteration. We compare this notion with two alternatives. The first one models
termination as absence of proper infinite iteration. We show that this notion is not equivalent
to the previous one, even under natural additional assumptions. It turns out that the notion
of termination induced by modal Kleene algebra is the more natural and more useful one. The
second alternative arises in modal logic as Lob’s formula [4]. Building on previous results for
general modal algebras [10], we show that the notions from modal logics and modal Kleene
algebra are essentially equivalent. Viewing Kleene algebra as an algebraic semantics for modal
logics, we thus obtain a simple calculational correspondence proof for a second-order frame



property. Note however, that the star operation of Kleene algebra is usually not available in
classical modal logic.

Third, we continue our research on abstract rewriting in Kleene algebra [18,19]. We prove
Bachmair’s and Dershowitz’s well-founded union theorem [2] and a variant of Newman’s
lemma (cf. [I]) in modal Kleene algebra. These proofs are simpler than previous results in
related structures [106,3]. Moreover, modal Kleene algebra provides an algebraic semantics to
the usual rewrite diagrams; the algebraic proofs immediately reflect their diagrammatic coun-
terparts. Together with our earlier results this shows that a large part of abstract rewriting
is indeed conveniently modeled by modal Kleene algebra.

2 Kleene Algebra

A semiring is a structure (K, +,-,0, 1) such that (K, +,0) is a commutative monoid, (K-, 1)
is a monoid, multiplication distributes over addition from the left and right and zero is a left
and right annihilator, that is, a0 = 0 = Oa for all a € K (the operation symbol - is omitted
here and in the sequel). The semiring is idempotent if it satisfies a + a = a for all a € K.
Then K has a natural ordering < defined for all a,b € K by a < b iff a +b = b. It induces a
semilattice with + as join and 0 as the least element; addition and multiplication are isotone
w.r.t. the natural ordering.

A Kleene algebra [13] is a structure (K, *) such that K is an idempotent semiring and
the star * satisfies, for a,b,c € K, the unfold and induction laws
1+aa" <a*, (x1) b+ac<c=a"b<c, (x-3)
l4+a"a<a®, (x2) b+ca<c=ba" <c. (x-4)

Therefore, a* is the least pre-fixpoint and the least fixpoint of the mappings Ax.ax 4+ b and
Az.xa + b. The star is isotone with respect to the natural ordering.

Models of KA are for instance the set-theoretic relations under set union, relational com-
position and reflexive transitive closure, the sets of regular languages (regular events) over
some finite alphabet, the algebra of path sets in a directed graph under path concatena-
tion and the algebra of imperative programs with non-deterministic choice, composition and
iteration.

A Boolean algebra is a complemented distributive lattice. By overloading, we usually
write 4+ and - also for the Boolean join and meet operation and use 0 and 1 for the least and
greatest elements of the lattice. The symbol — denotes the operation of complementation.
We will consistently use the letters a, b, c... for semiring elements and p, q,r, ... for Boolean
elements.

A test semiring is a two-sorted structure (K, B), where K is an idempotent semiring and
B C K is a Boolean algebra embedded into K such that the B operations coincide with the
restrictions of the K operations to B. In particular, p < 1 for all p € B. But in general, B is
only a subalgebra of the subalgebra of all elements below 1 in K. We call elements of B tests
and write test(K) instead of B for the algebra of tests. We will also use relative complement
p — q = pll—q and implication p — ¢ = —p + ¢ with their standard laws.

A Kleene algebra with tests [11] is a test semiring (K, B) such that K is a KA. For all
p € test(K) we have that p* = 1.

3 Modal Kleene Algebra

Let a semiring element a describe an action or abstract program and a test p a proposition
or assertion. Then pa describes a restricted program that acts like @ when the initial state
satisfies p and aborts otherwise. Symmetrically, ap describes a restriction of @ in its possible



final states. We now introduce an abstract domain operator " that assigns to a the test that
describes precisely its enabling states.

An semiring with domain [7] (a T-semiring) is a structure (K,"), where K is an idem-
potent semiring and the domain operation ": K — test(K) satisfies for all a,b € K and
p € test(K)

0 < (a)a, (d1) T(pa) <p, (42) Ta') < (ab). (d3)

If K is a KA, we speak of a KA with domain, briefly "-KA. To explain (d1) and (d2) we note
that their conjunction is equivalent to each of

o <p<a<pa, (llp) fa<ps -pa<0, (gla)

which constitute elimination laws for 7. (llp) says that Ta is the least left preserver of a.
(gla) says that —"a is the greatest left annihilator of a. Both properties obviously characterize
domain in set-theoretic relations. (d3) states that the domain of ab is not determined by the
inner structure of b or its codomain; information about " in interaction with a suffices.

Many natural properties follow from the axioms. Domain is uniquely defined. It is strict
("a =0 < a =0), additive ((a+b) = "a+b), isotone (a < b = a <), local ((ab) = (a "))
and stable on tests ("p = p). It satisfies an import/export law ("(pa) = pTa), and an induction
law ("(ap) < p = T(a*p) < p). Finally, domain commutes with all existing suprema. See [7]
for further information.

A codomain operation 7 can easily be defined as a domain operation in the opposite
semiring. As usual in algebra, opposition just swaps the order of multiplication. We call a
semiring K with domain and codomain also a modal semiring; if K in addition is a KA, we
call it a modal KA.

Let K be a modal semiring. We introduce forward and backward diamond operators via
abstract preimage and image.

|a)p = "(ap), (1) {alp = (pa)", (2)
for all a € K and p € test(K). It follows that diamond operators are strict additive map-
pings (or hemimorphisms) on the algebra of tests. Hence (test(K),|a)) and (test(K), (a|) are
Boolean algebras with operators a la Jénsson and Tarski [12]. These structures are called
modal algebras in [10].

Duality with respect to opposition transforms forward diamonds into backward diamonds
and vice versa. If follows that they satisfy an ezchange law. For all a € K and p, q € test(K),

la)p < =g = (alg < —p. (3)

Duality with respect to complementation transforms diamonds into boxes and vice versa, for
instance |a|p = —|a)—p and |a)p = —]a]-p. It follows that diamonds and boxes are lower and
upper adjoints of Galois connections:

la)p < g p<lalg, (4) (alp<qep<ldg,  (5)

for all @ € K and p,q € test(K). The Galois connections are useful as theorem generators
and the dualities as theorem transformers.

In the sequel, when the direction of diamonds and boxes does not matter, we will use the
notation (a) and [a].

If test(K) is complete then ™ always exists; moreover, since it commutes with all suprema,
it has a unique upper adjoint which is . So in this case, the modal algebra is completely
characterized by the domain axioms and the Galois connection. If test(X) is not complete,
this need not be the case.

The Galois connections have some interesting consequences. In particular diamonds
(boxes) commute with all existing suprema (infima) of the test algebra.



For a test p we have
(p)q = pq, [plg=p—q.

Hence, (1) = [1] is the identity function on tests. Moreover, (0)p = 0 and [0]p = 1.
Finally, we note that in a KA with converse ~we have

4 Algebras of Modal Operators

Modal semirings have a much richer structure than plain modal algebras. We will now show
that the algebra of modal operators that arises from a pointwise lifting is a lattice-ordered
monoid that contains an idempotent semiring or a variant of a KA as a retract. This abstrac-
tion allows a more succinct pointfree style of reasoning.

A lattice-ordered monoid is a structure (K,+,M,-, 1) such that (K,+,M) is a lattice,
(K,-, 1) is a monoid and left and right multiplication are additive. These structures have
extensively been studied in [3]. If the lattice reduct of the monoid is distributive (Boolean),
we call the respective structure a d-monoid (a b-monoid).

We will use the pointwise ordering between functions f, g : test(K) — test(K) given by

f<gevVp.fp<gp (6)

Let (K) be the sets of all mappings Az.(a)x with a € K on some domain or codomain semiring
K. We define addition (or join), meet and multiplication on (K) pointwise by

({a) +(b))p = (a)p + (b)p,
({a) M (b))p = ((a)p)({b)p),
({a) - (B))p = (a)(b)p-

Then the structures ((K),+,M,-,(0), (1)) are d-monoids. Dually, with addition, meet and
multiplication defined by

([a] + [b))(p) =
([a] M b))(p) =
(la] - b
the structures ([K],+,M,-,[0],[1]) are d-monoids In both cases the pointwise ordering co-

incides with the natural semiring ordering which also is the lattice ordering. Using both
mappings Az.[a]x and Az.(a)z, we can extend the d-monoids to b-monoids, defining

(=(a)(p) = [a]=p,  (—la])(p) = (a)=p.

We will also use the pointwise liftings of — and — to the operator level.
In the case of a "-KA, the algebras of operators can be extended to KAs because of the
following unfold and induction laws at the operator level (cf. [7]).

D) +la)a®) <o), [1) +|a%)]a) <la®), (7)
[b) +1a)le) < le) = [a")[b) < ). (8)

These laws for the “inner star” induce an “outer star” |a)* that coincides with |a*) and turns
the algebra of boxes into a left KA. Analogous laws hold for the backward modal operators.
They imply the star fixpoint laws

) = [1) + |a)]a®) , "] = 1] Mla]la”] . (9)



Many properties of modal operators can now be presented much more succinctly in
the respective algebra of operators. First, the test-level Galois connections can be lifted to
operators f, g : test(K) — test(K):

la)f < g f<lalg, (alf < g f<ldg, (10)
for all @ € K. From this we immediately get the cancellation laws

|a)la] < (1) <lafla),  (alla] < (1) < lal{a], (11)
fla] <'1b) & f < |b){al (12)

The latter is proved as follows:

fla] < [b) = flal(al < [b)(al = f < [b){al = fla] < [b){alla] = fla] <[b).

The first step uses isotonicity, the second one cancellation (11) and neutrality of (1), the third
one isotonicity and the fourth one cancellation (11) again.
Semiring expressions inside of operators can be decomposed by the laws

(a+b) ={a)+(b),  lab) =[a)[b),  (ab| = (bl(al,
[a+b] =[a]T1[B],  |ab] = [a][b],  [ab] = [b][a]

Note that the decomposition with respect to multiplication is covariant for forward modalities
and contravariant for backward modalities. This results from the symmetry between domain
and codomain via opposition. The decomposition can be used to transform expressions into
normal form and to reason entirely at the level of modal algebra in the sense of [10].

Diamonds are isotone, that is, a < b implies (a) < (b). Dually, boxes are antitone, that
is, a < b implies [b] < [a].

5 Termination in Modal Kleene Algebra

We now abstract a notion of termination for modal semirings from set-theoretic relations.
A similar characterization has been used, for instance, in [10] for related structures. A set-
theoretic relation R C A x A on a set A is well-founded if there are no infinitely descending
R-chains, that is, no infinite chains zg,z1,... such that (z;31,2;) € R. It is Noetherian,
if there are no infinitely ascending R-chains, that is, no infinite chains xg,x1,... such that
(i, zi41) € R. Thus R is not well-founded if there is a non-empty set P C A (denoting the
infinite chain) such that for all x € P there exists some y € P with (y,z) € R. Equivalently,
therefore, P is contained in the image of P under R, that is, P C (PR)". Consequently, if R
1s well-founded, then only the empty set may satisfy this condition.
Abstracting to a modal semiring K we say that a is well-founded if

p<{alp=p<0. (13)
for all p € test(K). Dually, a is Noetherian, if for all p € test(K),

p<la)p=p<0 (14)
Note that by duality w.r.t. complementation a is Noetherian iff, for all p € test(K),

lap<p=1<p. (15)

The set of Noetherian elements in K is denoted by N(K). A -semiring K is Noetherian if
K = N(K).



Let us look at these definitions from another angle. According to the standard definition,
a relation R on a set A is well-founded iff every non-empty subset of A has an R-minimal
element. In a "- semiring K the minimal part of p € test(K) w.r.t. some a € K can alge-
braically be characterized as p — (a|p, i.e., as the set of points that have no a-predecessor in
p. So, by contraposition, the well-foundedness condition holds iff for all p € test(K)

p—{alp <0 = p<o,

which by simple Boolean algebra can be transformed into (13).

We now state abstract algebraic variants of some simple and well-known properties of
well-founded and Noetherian relations. We restrict our attention to Noethericity, whence to
T-semirings. Analogous well-foundedness properties hold automatically in the dual algebra.
For algebraic proofs of these properties see [7].

Lemma 1. Let K be a "-semiring. Let a,b € K, p € test(K) and 0 # 1.
(i) 0eN(K).

(1)) pE&N(K), if p#0 and in particular 1 ¢ N(K).

(iii) be N(K) and a < b imply a € N(K).

(iv) a € N(K) implies a1 <0, that is, a is irreflezive.

(v) a %0 andae N(K) imply a £ aa, that is a is not dense.

(vi) a€eN(K) iffat € N(K), for K a "-KA.

(vii) a* € N(K), for K a KA with domain.

(viii) a+be N(K) implies a € N(K) and b € N(K).

In general, a € N(K) and b € N(K) do not imply a + b € N(K), so that N(K)
is not a semilattice-ideal. A trivial counterexample is given by the relations a = {(0,1)}
and b = {(1,0)}. In Section 9 we will present commutativity conditions that enforce this
implication.

Proposition 2. The class of Noetherian " -semirings is a quasi-variety.

Proof. Let K denote the class of "-semirings that satisfy (14). Since the class of T-semirings
is a variety and (14) is a universal Horn sentence, K is closed under subalgebras and direct

products. It remains to show that K is not closed under homomorphisms. In [10], this has
been shown for the class of modal algebras that satisfy (14). Since the modal algebras are a
subclass of the "-semirings, also K is not closed under homomorphisms. a

6 Termination in Modal Logics

We now investigate two alternative equational characterizations of Noethericity. The first one
uses the star. The second one is without the star. It holds for the special case of a transitive
Kleenean element a i.e., when aa < a.

Let K be a "-semiring or a "-KA, respectively. Consider the equations

ja) < la)™(|1) — la)), (16) @) < fa)(|1) = la)).  (17)

The equation (17) is a translation of Lob’s formula from modal logic (cf. [1]) which expresses
well-foundedness in Kripke structures. We say that a is pre-Lobian if it satisfies (16). We say
that a is Lébian if it satisfies (17). The sets of pre-Lobian and Lobian elements of K are
denoted by pL(K) and L(K), resp.

In the relational model, Lob’s formula states that a is transitive and that there are no
infinite a-chains. We will now relate Lob’s formula and Noethericity.



Theorem 3. Let T be the set of transitive elements of a KA K with codomain.
(i) L(K)CN(K).

(ii) pL(K) C N(K).

(iii)) N(K) C pL(K).

(iv) N(T)C L(T).

Properties (i) and (iv) already hold in "-semirings. A calculational proof of (iii) based on [10]
can be found in [7].

Corollary 4. The class of "-semirings K in which N (K) comprises all transitive elements
of K is a variety.

The calculational translation between the Lob-formula and our definition of Noethericity
is quite interesting for the correspondence theory of modal logic. In this view, our property of
Noethericity expresses a frame property, which is part of semantics, whereas the Léb formula
stands for a modal formula, which is part of syntax. In modal semirings, we are able to express
syntax and semantics in one and the same formalism. Moreover, while the traditional proof
of the correspondence uses model-theoretic semantic arguments based on infinite chains, the
algebraic proof is entirely calculational and avoids infinity. This is quite beneficial for instance
for mechanization.

7 Termination via Infinite Iteration

Cohen has extended KA with an “ operator for modeling infinite iteration [5]; he has also
shown applications in concurrency control. In [19], this algebra has been used for calculating
proofs of theorems from abstract rewriting that use simple termination assumptions.

Dually to the Kleene star, the omega operator is defined as a greatest postfixed point.
An w-algebra is a structure (K,w) where K is a KA and

o < aa®, (18) c<ac+b=c<a”+a'd, (19)

for all a, b, c € K. Consequently, a* is also the greatest fixpoint of Ax . ax.
Like in Section 4, ofr a "-KA K it seems interesting to lift (18) and (19) to operator
algebras, similar to the laws (7), and (8) for the star. This is very simple for (18): for a € K,

) < |a)|a®). (20)

However, as we will see below, there is no law corresponding to (8) and (19). The proof of
(8) uses (llp) and works, since the star occurs at the left-hand sides of inequalities. There
is no similar law that allows us to handle the omega, which occurs at right-hand sides of
inequalities.

But instead, one can axiomatize the greatest fixpoint v|a) of |a) for a € K by

vlja) <la)vla), (21) p<la)p+q=p<vla)+la)g (22)

If test(K) is complete then by the Knaster-Tarski theorem v|a) always exists, since |a) is
isotone. In that case one can use a weaker axiomatization (see [10]) from which (22) follows
by greatest fixpoint fusion.

It will turn out that v|a) is more suitable for termination analysis than a“. Since |a)p =
—la]-p, existence of v|a) also implies existence of the least fixpoint pla] of |a], since ula] =

—w|a). In the modal p-calculus, pla] is known as the halting predicate (see, e.g., [11]). With
the help of v|a) we can rephrase Noethericity more concisely as
a € N(K) < vja) =0. (23)

As an immediate consequence of this we obtain



Corollary 5. Define, for fized q € test(K) and a € K, the function f : test(K) — test(K)
by fp=q+ |a)p. If v|a) exists and a € N(K) then f has the unique fixpoint |a*)q.

Proof. The star axioms imply that that the least fixpoint of f is |a*)q. But by the assumption
and (22) this is also the greatest fixpoint of f so that all fixpoints coincide with it. O

A notion of guaranteed termination can easily be defined in w-algebra as the absence
of infinite iteration. We call a w-Noetherian if a® < 0, and denote by N, (K) the set of all
w-Noetherian elements.

We now study the relation between Noethericity and w-Noethericity. We call a "-KA K
extensional, if

la) <[b) =a<b

holds for all a,b € K. Note that the language model is not extensional. The following lemma
shows that the relation between Noethericity and w-Noethericity does not depend on exten-
sionality. This is somewhat surprising, since set-theoretic relations are extensional and in the
relational model the two notions coincide.

Lemma 6. Let K be an w-algebra with domain.

(i) N(K) S No(K).

(i) Ny(K) L N(K), for K suitably chosen.

(iii) Ny(K) € N(K) for extensional K suitably chosen.

(iv) N,(K)C N(K) for non-extensional K suitably chosen.
Proof. (i) Let a be Noetherian. By isotonicity, for all p € test(K),

|a¥)p < |aa®)p = |a)|a®)p.

Hence Noethericity of a implies that |a“)p = 0 for all p € test(K). But, by strictness of
domain, this is the case iff a* = 0.

(ii) In the language model we have ¢* =0 if 1M a = 0, but also a # 0 = Vp.|a)p = p.

(iii) We use an atomic KA, in which every element is the sum of atoms, i.e., minimal
nonzero elements. The algebra has 4 atoms and hence 2% elements; it is order-isomorphic to
the power set of the set of atoms under inclusion. The atoms of the test algebra are p and g,
i.e., 1 = p+ ¢q. The domain of an element z is the sum of all atomic tests ¢ such that tx # 0.

Composition is given by a table for the atoms only; it extends to the other elements
through disjunctivity, thus satisfying this axiom by construction. E.g., for atoms w, x, y, z we
set (w+ z)(y + z) = wy + wz + xy + xz. The composition table is

The algebra is extensional. Moreover, it is easily checked that 0 is the only fixpoint of the
function Az . (a + b)z, so that (a + b)Y =0. But 1 < |a + b)1.

(iv) Consider the following KA K from Conway’s book, p. 101 [6]. It is the first of his
three-element examples. It consists of elements 0 < 1 < a; the ordering defines the addition
table. The only non-trivial relation in the multiplication table is aa = a. The star is defined
by a* = a and 0* = 1* = 1. We extend K to an w-algebra by setting 0¥ = 0 and 1*¥ = a* = a.
Moreover, we define a domain operation by "0 =0 and "l ="a = 1.

Since ¥ = 0 < x = 0 holds in K, that is, N,(K) = {0}, we have to verify N, (K)

-
N (K) only for the zero. But 0 € N(K) was already stated in Lemma 1(i). 0



The following corollary shows that (19) cannot in general be lifted to (22).
Corollary 7. There exists an "-KA K such that v|a) <0, but a® > 0 for some a € K.

Thus w-algebra does not entirely capture the standard notion of termination.

8 Termination of Exhaustive Iteration

We now study the behaviour of the exhaustive finite iteration of an element a € K, given by
exha = while"Tadoa = a*—"a .

Then we can represent the set of points from which a terminal point can be reached via
a-steps as
Texha) = (a*="a) = |a™)"a. (24)

Proposition 8. If a € N(K) then "(exha) = 1, i.e., from every starting point a terminal
point can be reached.

Proof. We calculate a recursion equation for "(exh a) as follows:

Texha) = [a")~a = (1) + [a}]a*))~"a

= —Ta+ |a)|a*)="a = =Ta + |a) (exha) .

The first step uses (24), the second one star unfold, the third one distributivity and neutrality
of 1, the fourth one again (24).

So T(exha) has to be a fixpoint of f(p) = —"a + |a)p which by Noethericity of a and
Corollary 5 is unique. Hence our claim is shown if 1 also is a fixpoint of f. This is easy, since
f)y==-"a+|a)l =-Ta+"a=1. 0

This theorem shows again that modal Kleene algebra is more adequate for termination
analysis than omega algebra. To see this, consider the algebra LAN of formal languages which
is both an omega algebra and a "-KA with complete test algebra test(LAN) = {0,1}. In LAN
we have |a)1 = "a =1 # 0 when a # 0 and hence N (a) < a = 0. Moreover, distinguishing the
cases a = 0 and a # 0, easy calculations show that in LAN we have exh a = —"a. This mirrors
the fact that by totality of concatenation a nonempty language can be iterated indefinitely
without reaching a terminal element. But we also have a¥ = 0 whenever 1Ma = 0. Therefore,
unlike in the relational model, a¥ = 0 # (exha) = 1, while still v|a) = 0 = T(exha) = 1.
Hence, for termination analysis in KAs more general than the relational model the element
v|a) seems more adequate than a®.

9 Additivity of Termination

It has been shown that many statements of abstract rewriting that depend on termination
assumptions can be proved in w-algebra [19], among them an abstract variant of Bachmair’s
and Dershowitz’s well-founded union theorem [2]. As we have seen in the previous section,
there is a gap between termination in w-algebra and in "-KA. Here, we provide a proof of
Bachmair’s and Dershowitz’s theorem in "-KA.

Consider a KA K and a,b € K. We say that a semi-commutes over b, if ba < a™b*.
a quasi-commutes over b, if ba < a(a + b)*. We write sc(a,b) if a semi-commutes over b
and gc(a,b), iff a quasi-commutes over b. Semi-commutation and quasi-commutation state
conditions for permuting certain steps to the left of others. In general, sequences with a-steps
and b-steps can be split into a “good” part with all a-steps occurring to the left of b-steps
and into a “bad” part where both kinds of steps are mixed.



Lemma 9. For a KA K and all a,b € K,
(a+b)* =a*b* +a*bTala+b)*. (25)

The following lemma lifts semi-commutation and quasi-commutation to sequences of b-steps.

Lemma 10. For a KA K and all a,b € K,
(i) sc(a,b) & b*a < atb*,
(it) qc(a,b) < bTa < ala+b)*,

Proofs for these two lemmas can be found in [19]. The following lemma compares quasi-
commutation and semi-commutation.

Lemma 11. Consider a KA K and a,b € K.
(i) sc(a,b) = gc(a,b).
(i1) If K is an extensional "-KA and a € N(K) then gc(a,b) = sc(a,b).

Proof. (i) Let a semi-commute over b. By Kleene algebra, a™b* = a(a*b*) < a(a + b)*.
(ii) Let a quasi-commute over b and let a be Noetherian. First, we calculate

ala+b)* = a(a*b* + a*bTa(a+b)*) = a™b* +atbtala + b)*
<atbv* +atala+b)* (a+b)*=atb*+atala+b)".

The first step uses Lemma 9, the second one distributivity and the definition of a™, the third
one Lemma 10 (ii), the fourth one z*z* = z*.

In order to apply Noethericity, we now pass to the modal operator semiring. To enhance
readability, we write « for |a) and § for |b) and ¢ for |0).

ala+B)* —atp* < (ot +atala+ B)*) —ats*
= (a"* —a*f) + (aaT(a + B)" — a" )
<aa(a+p) —atap*
=aT(ala+B)" —atp%).

The first step uses isotonicity of minus in its first argument. The second step uses (p+¢q) —r =
(p— 1)+ (¢ — 7). The third step uses p —p = 0, a*a®™ < a™ and antitonicity of subtraction
in its second argument. The fourth step uses aa™ = a™a and distributivity.

By Lemma 1(vi) we know that a is Noetherian iff a™ is. Therefore a™ (a+8)*—atp* < (,
whence at(a + 3)* < a™3*. The claim then follows from o < o and extensionality. O

Lemma 12. Let K be a "-KA.

(i) Foralla e N(K) and b € K, gc(a,b) = b*a < a™b*.

(11) For all a,b € K, qc(a,b) and a € N(K) imply b*a € N(K).
(iii) For all b,b*a € N(K), (a+b) € N(K).

Proof. We use the same abbreviations as in the previous proof.

(i) Immediate from Lemma 11 and Lemma 10 (i).

(ii) Let a € N(K) and af3 < (a + 8)*a. Then by (i), a3* < f*a™. Now let p < S*ap,
whence p < a™#*p and in particular 3*p < a**p. Since by Lemmal (vi) a is Noetherian iff
a™ is, we have that 3*p < 0 by assumption. This can only be the case if p < 0.

(iii) We calculate (a +b)" = (b*a)*b*(a +b) < (b*a)™ + bT.

Now a+ b is Noetherian if (a+b)" is. Let p < (a+ 3)Tp. Then p < (8*a)Tp+ B pand p <0
follows from the assumptions. O
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Lemma 12 (ii) and (iii) immediately imply the main theorem of this section. It generalizes
the Bachmair-Dershowitz well-founded union theorem from relations to modal Kleene algebra.

Theorem 13. Let K be an extensional "-KA. For all a,b € K, if qc(a,b), then (a + b) €
N(K), iff a,b € N(K).

These results show that modal Kleene algebra provides proofs for abstract rewriting which
are as simple as those in omega algebra. Note that the proofs in [2] are rather informal, while
also previous diagrammatic proofs (e.g. [9]) suppress many elementary steps. In contrast,
the algebraic proofs are complete, formal and still simple. An extensive discussion of the
relation between the proofs in omega algebra and their diagrammatic counterparts can be
found in [19]. In particular, the algebraic proofs mirror precisely the diagrammatic ones. This
also holds for the modal proofs we present here.

10 Newman’s Lemma and Normal Forms

We now turn from semi-commutation to commutation and confluence. For their direct alge-
braic characterization one either has to use converse at the element level or a combination
of forward and backward modalities at the operator level. Since we do not have converse
available, we have to choose the second alternative.

We say that a,b € K commute if (b*||a*) < |a*)(b*|, and commute locally if (b|la) <
|a*)(b*|. As a special case, we call a € K (locally) confluent if it (locally) commutes with
itself. These definitions can be visualized as

CL* :4.\\_7 b* a* 774.\\_7 b*
If one wants to avoid combinations of forward and backward modalities, one can express
commutation and confluence by the Geach formula [1] that replaces the expression a*b < cd”

of a modal KA with converse by |b)|d] < |a]|c) (see [15] for a proof). Equivalence to the above
formulation is shown by

[b)]d] < lalle) < (al[b)|d] < |e) < (al[b) < |e){d]-

The first step uses (10), the second one (12). Consequently, commutation and local commu-
tation are equivalent to the following formulas:

|[a®)[b*] < [b7]|a"), |a)|b*] < [bl]a").

However, these formulas are much less intuitive than our original ones. Still, the proof we
present below can be carried out in this unidirectional form as well.

In the relational setting, the generalization from confluence to commutation has been
used in [17] for a theory of term-rewriting with pre-congruences that extends the traditional
equational case. This also leads to generalizations of the Church-Rosser theorem and of New-
man’s lemma. While the Church-Rosser case has already been proved in Kleene algebra in

[18], it has been argued in [19] that a proof of Newman’s lemma does not work in pure Kleene
or omega algebra.
For the equational case, [10] gives a calculational proof of Newman’s lemma in relation

algebra. But it cannot be adapted to our case, since it uses a notion of unique normal form
that does not exist in the commutation-based setting. Moreover, conceptually it is nicer to
completely uncouple confluence from normal forms.
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We will faithfully reconstruct the diagrammatic proof using Noetherian induction [17];
it will turn out that modal Kleene algebra is very well suited for this. A calculational proof
that is close in spirit occurs in [8]. However, it is more complex in that it uses full residuation,
whereas we can make do with the much weaker concept of modal operators. (The modal box
operator corresponds to the monotype factor that is also used in [%].) Also, the theorem there
is more restricted in application, since it only covers the relational case, whereas our result
also applies to e.g. the path algebra.

Now we are ready for our generalization of Newman’s lemma.

Theorem 14. Let K be a modal KA with complete test algebra. If a+b € N (K) and a and
b commute locally then a and b commute.

Proof. The central idea of our proof is to use a generalized predicate that characterizes the
set of all points on which a and b commute and to retrieve C as a special case. If we can show
that this predicate is contracted by |a + b] then, by the second form (15) of Noethericity, we
are done.

So let us define (rc stands for “restricted commutation”)

re(p, a,b) < (b[(p)|a”) < |a®)(0*] .

re(p, a,b) states that a and b commute on all points in p. We have used the notation (p)
to enhance the symmetry of the formulation; this is justified, since |p) = (p| for all tests
p. Clearly, a and b commute iff r¢(1,a,b). Moreover, by isotonicity rc is downward closed,
ie., rc(p,a,b) Aq < p= rc(q,a,b). We now define (the supremum exists by completeness of
test(K))

r =sup{p|rc(p,a,b)} .
This represents the set of all points on which a and b commute. Now, completeness of test(K)
implies that - distributes over all suprema in test(K), so that |r) = sup{|p) | re(p, a, b) }. More-

over, composition with diamonds is universally disjunctive in both arguments, so that we may
infer rc(r, a, b). Together with downward closure of rc we therefore obtain the characterization

p <r < re(p,a,b) . (26)

We now show that r is contracted by |a + b], so that a + b € N(K) implies r = 1. For
this we first calculate

(la+br<r)ye (Vp.p<la+br=p<r)
< (Vp.(at+bp<r=p<r)
e Vp.lalp<rA(Qlp<r=p<r)
< (Vp.re(pa,a,b) A re(pp, a,b) = rc(p,a,b)).
The first step uses indirect inequality, the second one the Galois connection (5), the third
one distributivity and Boolean algebra, the fourth one (26) and the definition p; = (z|p.
So assume rc(pg, a,b) A re(py, a,b). By the star fixpoint law (9) and distributivities

(O [{p)a”) < (b7[{p) + (07 |(0(p)]a)|a”) + (p)|a”) -

The outer two of these summands are below |a*)(b*| by isotonicity, p < 1 < z* and neutrality
of |1). For the middle summand we first state

(p)|z) = (p)|x)(px) < [x)(pa) (x[(p) = (pz)(2|(p) < (pa)(x] - (27)
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This follows by isotonicity, since the definition of p, and right neutrality of codomain imply
pr = pr(ps) < x(p;). Now we calculate

(b |(0l (p}|a)]a”)

*

—~

po){blla)(pa)la”)
pb>la*><b*|<pa>!a )
|
|
)
B

*

—~

b*|(0*|(pa)la™)
b*[(pa)la”)

“ ()

b

—_— o~ o~

Q

————/\/\
\/\/\/\/__

VAN VAN VAN VANRE VAN VAN

—~

The first step uses idempotence of (p), codomain propagation (27) twice and compositionality,
the second one LC(a,b), the third one the assumption rc(pg,a,b), the fourth one idempo-
tence of star and compositionality, the fifth one the assumption rc(pp,a,b), the sixth one
idempotence of star and compositionality.

This finishes the proof. We reflect this last calculation in a diagram in which the bottom
point is in p and the two points in the next higher layer are in p;, and p,, respectively.

///\

NN
WA

O

We conclude this section by showing that confluence implies uniqueness of normal forms.
As in Section 8, for a € K the element exh a = a*—"a describes the exhaustive iteration of a,
the points in (exh a)? being the normal forms. Now, a Kleene element b assigns to each point
in its domain at most one point in its codomain iff b is deterministic, i.e., iff (b||b) < (1). This
formula corresponds to the relational characterization bb < 1 of determinacy of b. Now we
can show

Lemma 15. If a is confluent then exh a is deterministic.
Proof. Plugging in the definition of exh a we calculate

(a"=Malla"a) = (Fa)(a™||a”)(=a) < (=Ta)|a®)(a"|(="a)

= ["laa®)(=Taa™| = |=fa)(af < (1).

The first step uses compositionality, the second one confluence of a, the third one compo-
sitionality again, the fourth one the star fixpoint law, distributivity and (gla), the fifth one
isotonicity and idempotence of (1). 0

11 Conclusion

We have used modal KA for termination analysis, introducing and comparing different notions
of termination that arise in this context and applying our techniques to two examples from
abstract rewriting. All proofs are abstract, concise and entirely calculational. Together with
previous work [18,19] our case study in abstract rewriting shows that large parts of this
theory can be reconstructed in modal Kleene algebra. Due to its simplicity, our approach
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has considerable potential for mechanization. There are strong connections with automata-
theoretic decision procedures.

From the proof of Newman’s lemma and the associated diagram it becomes clear that
modal Kleene algebra allows one to perform induction in the middle of an expression. This is
not possible in pure Kleene or omega algebra due to the shape of the star and omega induction
rules. This shows that modal Kleene algebra allows “context-free” induction, whereas pure
Kleene or omega algebra only admits “regular” induction. Therefore, in [8] residuals are used
to move the point of induction from the middle of an expression to its ends and back.

The results of this paper contribute to an attempt to establish modal Kleene algebra as
a formalism that enhances safe cross-theory reasoning and therefore interoperability between
different calculi for program analysis. We envision three main lines of further work. First, the
integration of our results into Hoare-style reasoning and into Kleene algebras for the weakest
precondition semantics. Second, a further exploitation of the mentioned connection with the
modal p-calculus. Third, further applications of our technique to the analysis of programs
and protocols.
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